1. The unit Pascal Pa is the same as the units of	Nm^{-2}
2. Force exerted per unit area is called	pressure
3. The pressure increases as the area of the body	decreases
4. The density is mass divided by	volume
5. The unit of density is	Kgm^{-3}
6. The density of the body is proportion to its volume	Inversely
7. According to Pascal principle, ". \qquad applied on a fluid is transmitted equally in all directions"	Pressure
8. A force of 2000 N acts on a body of area $2.5 \mathrm{~m}^{2}$. The presuure exerted on the body is	800Pa
9. The pressure difference between any two points in a liquid is given by	$\Delta \mathrm{P}=\mathrm{h} . \mathrm{g} . \rho$
10. Barometer is a pressure measured device used to measure	Atmospheric pressure
11. Manometer is a pressure measured device used to measure	Relative pressure
12. If the area on which a certain force is applied is increased 6 times, the pressure exerted will.	decrease 6 times
13. A force of 453 N is applied on a body of area $22 \mathrm{~cm}^{2}$, The pressure on the body is	$2.06 \times 10^{5} \mathrm{~Pa}$
14. If ρ is the density, m the mass and V the volume of a body then	$\boldsymbol{\rho}=\mathbf{m} / \mathrm{V}$
15. According to Pascal's principle if the pressure applied on an enclosed fluid at one point is 1500 Pa , the pressure at any other in the fluid will be	1500 Pa
16. A mercury barometer ($\rho \mathrm{Hg}=13600 \mathrm{~kg} \mathrm{~m}-3$) shows a pressure of 702 mmHg at 2 pm and $704 \mathbf{~ m m H g}$ at $\mathbf{3} \mathbf{~ p m}$. What is the rate of change of pressure in Pa min-1.	4.4 Pa min-1
17. A liquid of density $1150 \mathrm{kgm}-3$ is in a cylinder. The height of liquid is 0.27 m What is the pressure exerted by the liquid on the base of the cylinder?	3105 Pa
18. Absolute pressure is the pressure measured relative to	atmospheric pressure
19. A state of matter that doesn't flow in the response to a shearing force	Solid state
20. A state of matter which flow in response to a shearing force	Liquid state
21. A state of matter where intermolecular bonding is negligible and its properties are determine by nuclear collisions	Gas state
22. The pressure relative to the local atmospheric pressure	Gauge pressure
23. The pressure measured relative to a perfect vacuum	Absolute pressure
24. Example 11.2 page 74	
25. Example 11.3 page 75	

