Model questions on chapter 9 kinematics

1. It is mechanical wave transmitted as compression or strain wave through a medium which are the object cause of hearing	Sound
2. Light wave is	Transverse wave
3. Sound wave is	Longitudinal wave
4. It consists of molecules with two area compression and rarefaction	Longitudinal wave
5. it is it is the area at which the molecules are closer together.	Compression
6. it is the area at which the molecules are more spare	Rarefaction
7. Equation of speed of wave sound	$c_{\text {sound }}=\sqrt{\frac{B}{\rho}}$
8. As the density of the medium increases increases	The speed of sound
9. Speed of sound depends on the	Materials through which it travels
10. The bulk modulus of water is 2.2×10^{9} and its density $1000 \mathrm{~kg} / \mathrm{m}^{3}$. The speed of sound in water is	1483
11. Calculate the proportion of a sound wave's energy transmitted as an air/water boundary $\mathrm{z}_{1}=413 \mathrm{kgm}^{-2} \mathrm{~s}^{-1}, \mathrm{z}_{2}=1.44 \times 106 \mathrm{kgm}^{-2} \mathrm{~s}^{-1}$,	$\begin{aligned} & \mathrm{R}=2.87 \times 10-4 \\ & \mathrm{~T}=1-(1-\mathrm{r})^{2} /(1+\mathrm{r})^{2}=0.001 \end{aligned}$
12. A property of a medium which determines many of acoustic properties	A caustic impedance
13. The relation between the acoustic impedance and the speed of sound	$\mathrm{Z}=\rho \times \mathrm{c}_{\text {sound }}$
14. the apparent highness or lowness of sound which is determine by frequency.	Pitch
15. the magnitude of the auditory sensation produces by sound wave determine by amplitude and frequency	Loudness
16. logarithmic unit used to compare ratios (sound pressure, power, intensity).	Decibel
17. The apparent shift in frequency (and hence pitch) of a sound when the source and observer are in relative motion	Doppler effect
18. Moving source fixed observer (towards each other)	$f^{\prime}=f \frac{c}{c-v_{s}}$
19. The hooter of an approaching taxi has a frequency of 500 Hz . If the taxi is travelling at $30 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and the speed of sound is $340 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, calculate the frequency of sound that you hear when the taxi is approaching you.	548.4HZ
20. Moving source fixed observer (away from each other)	$f^{\prime}=f \frac{c}{c+v_{s}}$

21. The hooter of an approaching taxi has a frequency of 500 Hz . If the taxi is travelling at $30 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and the speed of sound is $340 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, calculate the frequency of sound that you hear when the taxi is away from you?	459.46 HZ
22. When an automobile moves towards a listener, the sound of its horn seems relatively	High Pitched (high frequency)
23. When the automobile moves away from the listener, its horn seems	Low pitched (low frequency)
24. The changed pitch of the Doppler effect is due to changes in	wave frequency
25. Fixed source moving observer (towards each other)	$f^{\prime}=f \frac{c+v_{d}}{c}$
26. Fixed source moving observer (away from each other)	$f^{\prime}=f \frac{c-v_{d}}{c}$
27. The hooter of taxi has a frequency of 500 Hz . If the taxi is travelling at $30 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and you are travelling with speed $10 \mathrm{~ms}^{-1}$ and the speed of sound is $340 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, calculate the frequency of sound that you hear when the taxi is away from you	548.4 Hz

