1. The time interval between two events	Elapsed time
2. The length of the path between two special positions	Distance
3. A vector equivalent of distance - It specifies the distance and direction of one point in space relative to another	Displacement
4. A scalar measure of the rate of motion	Speed
5. The change of displacement with respect to time - A vector measure of the rate of motion - It specifies both the magnitude and direction of the rate of motion	Velocity
6. The SI unit of speed (velocity) is	$\mathrm{m} / \mathrm{s} \quad \mathrm{ms}^{-1}$
7. A measure rate of the velocity - Acceleration is a vector quantity	Acceleration
8. The SI unit of acceleration id	$\mathrm{m} / \mathrm{s}^{2} \quad \mathrm{~ms}^{-2}$
9. The following are vector quantity	Displacement Velocity - Acceleration
10. The following are scalar quantity	Distance - Speed Time - energy
11. A car is moving a distance 24 m in 8 seconds. Its velocity is	$3 \mathrm{~m} / \mathrm{s}$
12. A car is moving with velocity $3 \mathrm{~m} / \mathrm{s}$ for 8 seconds. The distance that car moves is	24 m
13. Aa car starts moving with velocity $\mathbf{3} \mathrm{m} / \mathrm{s}$. its velocity increases to be $5 \mathrm{~m} / \mathrm{s}$ in 5 seconds, the acceleration is	$\begin{array}{\|l\|} \hline(5-3) / 5 \\ 0.4 \mathrm{~m} / \mathrm{s}^{2} \end{array}$
14. A car is moving with constant velocity $3 \mathrm{~m} / \mathrm{s}$ for 10 seconds. Its acceleration during this time is	Zero
15. A ball is dropped from a tower. It takes 5 seconds to reach the ground, the height of the tower is	$\begin{gathered} d=\frac{1}{2} g \times t^{2} \\ d=\frac{1}{2} \times 10 \times 5^{2}=125 \mathrm{~m} \end{gathered}$
16. If you throw a ball straight up at $12 \mathrm{~m} / \mathrm{s}$, how high it will go $\begin{gathered} g=\frac{\Delta v}{t}=\frac{v_{2}-v_{1}}{t} \\ g==\frac{0-12}{-10}=1.2 \mathrm{~m} / \mathrm{s}^{2} \end{gathered}$	$\begin{aligned} d=v_{a v} \times t= & 6 \times 1.2 \\ & =7.2 \mathrm{~m} \end{aligned}$
17. How long will it take the ball to fall to the ground. If the distance is 7.2 m $d=\frac{1}{2} \times g \times t^{2}$	$\begin{array}{r} t=\sqrt{\frac{2 d}{g}}=\sqrt{\frac{2 \times 7.2}{10}} \\ =1.2 \mathrm{~s} \end{array}$

