Model (A)

PHYS115	Final Exam Qassin		t's name
	Time (120 minutes)	
Choose the best	t answer:		
1. An electric moto	r lifts an elevator 35 m in 28 s t	by exerting an upward force	e of 6.4×10^4 N. What power
does the motor pro-	duce in kilowatts?		
a) 32.8 kW	b) 23 kW	c) 2.5 kW	d) 80 kW
2. The angular mor	nentum of a particle with respec	ct to the origin is a vector q	uantity defined as:
a) $\vec{\ell} = \vec{r} \cdot \vec{p}$	b) $\vec{\ell} = \vec{r} \times \vec{p}$	c) $\vec{\ell} = m \times \vec{p}$	d) $\vec{\ell} = \vec{v} \times \vec{p}$
3. The rear wheel o	on a clown's bicycle has twice th	ne radius of the front wheel	. When the bicycle is moving,
is the angular speed	d of the rear wheel greater than,	less than, or the same as th	at of the front wheel?
a) Greater than	b) Less than	c)	Equal to
4. A disk is rotating	g about its central axis like a m	erry-go-round. The angula	position of a reference line on
the disk is given by	$\theta = -2 + 0.8 t - 0.3 t^2$. When	nat is the angular speed of the	he disk after 10 seconds?
a) 7.4 rad/s	b) 10.22 rad/s	c) -12.4 rad/s	d) -5.2 rad/s
5. Clockwise rotati	on in rotational motion is positi	ve:	
a) False		b) True	
6. If two bodies stic	ck together when colliding, then	the collision is called:	
a) Inelastic collisio	n b) Elastic col	lision c)	Completely inelastic collision
7. The linear mom	entum of a system of particles	is equal to the product of	f the total of the
system and the velo	ocity of the center of mass.		
a) Displacement	b) Force	c) Energy	d) Mass
8. If a force is angle	led upward by 65^0 to the floor a	and magnitude 24 N acting	on an object. The speed of the
object is 5 m/s. Wh	at is the power?		
a) 50.7 W	b) 22.4 W	c) 123 W	d) 26 kW
9. A 1800 kg car sp speed?	beeds up from 16 m/s to 20 m/s.	How much work was done	e on the car to increase its
a) 8.68×10 ⁵ J	b) 19.62×10 ³ J	c) 16.35×10 ⁴ J	d) 12.96×10 ⁴ J
10. Force product v	velocity, gives:		
a) Work	b) Energy	c)	Power
11. A body of mass	s 120 kg is moving with a speed	of 8 m/s. What is the kinet	ic energy of the body?
a) 2012.5 J	b) 3840 J	c) 3122.5 J	d) 1740 J
12. Pushing a stran	ded dolphin back to sea require	s a constant force of 600 N	over a distance of 30 meters.
How much work is	done on the dolphin?		
a) 16 kJ	b) 18 kJ	c)	17 kJ

		Mode				
13	_ is energy transfe	rred to or from an	object by means	of a force acting on the object.		
a) Torque	b) Work	c) Impulse		Ioment of Inertia		
14. The force comp	ponent perpendicul	lar to the displace	ment does	work.		
a) Zero	b) Pos	itive	c) N	legative		
15. The SI unit of a	e					
a) kg.m/s	b) kg.m ² /s	c) kg.m/s ²	d) kg.1	n^2/s^2		
16. The equation the						
a) $U(y) = my$	b) $U(y)=(1/2)n$	ny^2 c)	U(y) = mgy	d) $U(y) = E + KE$		
17. The net work done by a conservative force on a particle moving around any closed path is						
zero.						
a) greater than		b) smaller	than	c) equal to		
18. When there are	e no torques acting	on a body, its ang	gular momentum	is constant.		
a) True		b) False				
19. Mechanical En	ergy is:					
a) The sum of kine	tic energy and the	rmal energy				
b) The sum of grav	vitational energy ar	nd potential energ	У			
c) The sum of kine	tic energy and pote	ential energy				
d) The sum of kine	etic energy and mo	mentum				
20. A child of mas	s (m) is released fr	rom rest at the top	of a water slide,	at height of 22 m above the bottom		
of the slide. Assum	ning that the slide i	s frictionless, find	l the child's spee	d at the bottom of the slide?		
a) 33.4 m/s	b) 28.2	m/s	c) 12.5 m/s	d) 20.8 m/s		
21. Energy associa	ted with compress	ion or extension o	f a spring is calle	ed:		
a) Gravitational Er	nergy	b) Kinetic Energy	1	c) Elastic Potential Energy		
22 is t	he product of the a	verage force on a	n object and the	time interval over which it acts.		
a) Angular velocity	y b) Imp	ulse c)	Kinetic Energy	d) Angular momentum		
23. In an accident	on a slippery road,	a compact car wi	th a mass of 222:	5 kg moving at 16 m/s smashes into		
the back end of a c	ar with mass 3400	kg moving at 8 m	n/s in the same di	rection. What is the final velocity if		
the damaged cars s	stick together?					
a) 2.64 m/s	b) 1.25	m/s	c) 11.16 m/	s d) 17.6 m/s		
24. For an upward displacement, the gravitational force does negative work on the object.						
a) True		b)	False			
25. Newton's second	nd law for rotation	is given by:				
a) $\tau = \omega . \alpha$	b) $\omega = I.\theta$	c)	$\theta = \omega. \alpha$	d) $\tau = I. \alpha$		
26. The torque acti	ng on an object is	given by:				
a) $\tau = r.F.\sin\theta$		b) $\tau = r.F.\cos\theta$)	c) $\tau = v.F.\sin\theta$		
27. A compact car with mass 460 kg is moving at 25 m/s towards east. The magnitude of its momentum is:						
a) 29514 kg.m/s		b) 11500 kg.m/s		c) 54435 kg/s		

Model (A)

28. Momentum may be expressed in:								
a) kg/m	b) gram/s	c) N.s	d) kg/(m/s)					
29. Angular speed of 6 rev/min is the same as:								
a) 0.63 rad/s	b) 57 rad/s	c) 3.14 rad/s	d) 6π rad/s					
30. An object rotates from θ_1 to θ_2 through an angle that is less than 2π radians. Which of the following								
represents its angular displacement?								
a) θ_2	b) θ_1 - θ_2	c) θ_2 - θ_1	d) $\theta_1 + \theta_2$					
31. If a disk turning at a constant rate completes 220 revolutions in 12 s its angular speed is:								
a) 44.31 rad/s	b) 94.2 rad/s	c) 10 rad/s	d) 115.13 rad/s					
32. 15 seconds after an	n electric fan is turned on,	, the fan rotates at 450 rev/	min. Its average angular					
acceleration is:								
a) 50 rev/min ²	b) 0.33 rad/s ²	c) 3.14 rad/s^2	d) 33.14 rad/s ²					
33. A wheel initially h	as an angular velocity of	64 rad/s but after 8.0 s its a	angular velocity is 25 rad/s. If its					
angular acceleration is constant the value is:								
a) 2.0 rad/s ²	b) -4.9 rad/s^2	c) 6.0 rad/s^2	d) -0.4 rad/s^2					
34. For only conservat	tive forces within an isola	ted system,	energy is conserved.					
a) Mechanical	b) Kinetic	c) Potential	d) Thermal					
		35. The relationship between linear velocity and angular velocity is given by:						
35. The relationship b	etween linear velocity and	d angular velocity is given	by:					
35. The relationship be a) $v = d\theta$	etween linear velocity and b) $v = ra$	d angular velocity is given c) $a = r\alpha$	by: d) $v = r\omega$					
a) $v = d\theta$	-	c) $a = r\alpha$	-					
a) $v = d\theta$	b) $v = ra$	c) $a = r\alpha$	-					
a) $v = d\theta$ 36. The equation of ro	b) $v = ra$ b) tational kinetic energy is b) $1/2 (I\omega^2)$	c) $a = r\alpha$ given by:	d) $v = r\omega$					
a) $v = d\theta$ 36. The equation of ro a) $1/2 (m\omega^2)$	b) $v = ra$ extational kinetic energy is b) $1/2 (I\omega^2)$	c) $a = r\alpha$ given by:	d) $v = r\omega$					
a) $v = d\theta$ 36. The equation of ro a) $1/2 (m\omega^2)$ 37. The spring force is a) Conservative	b) $v = ra$ tational kinetic energy is b) $1/2 (I\omega^2)$ s b)	c) $a = r\alpha$ given by: c) <i>m.v</i> Non-conservative	d) $v = r\omega$					
a) $v = d\theta$ 36. The equation of ro a) $1/2 (m\omega^2)$ 37. The spring force is a) Conservative	b) $v = ra$ tational kinetic energy is b) $1/2 (I\omega^2)$ b) d B, have equal kinetic energy	c) $a = r\alpha$ given by: c) <i>m.v</i> Non-conservative	d) $v = r\omega$ d) $1/2 (Iv^2)$					
a) $v = d\theta$ 36. The equation of ro a) $1/2 (m\omega^2)$ 37. The spring force is a) Conservative 38. Two bodies, A and	b) $v = ra$ tational kinetic energy is b) $1/2 (I\omega^2)$ b) d B, have equal kinetic en- at of B is:	c) $a = r\alpha$ given by: c) <i>m.v</i> Non-conservative	d) $v = r\omega$ d) $1/2 (Iv^2)$					
a) $v = d\theta$ 36. The equation of ro a) $1/2 (m\omega^2)$ 37. The spring force is a) Conservative 38. Two bodies, A and momentum of A to that	b) $v = ra$ tational kinetic energy is b) $1/2 (I\omega^2)$ b) d B, have equal kinetic en- at of B is: b) 1:3 c)	c) $a = r\alpha$ given by: c) <i>m.v</i> Non-conservative ergies. The mass of A is fo	d) $v = r\omega$ d) $1/2 (Iv^2)$					
a) $v = d\theta$ 36. The equation of ro a) $1/2 (m\omega^2)$ 37. The spring force is a) Conservative 38. Two bodies, A and momentum of A to that a) 1:9	b) $v = ra$ tational kinetic energy is b) $1/2 (I\omega^2)$ b) d B, have equal kinetic energy at of B is: b) 1:3 c) related to the:	c) $a = r\alpha$ given by: c) <i>m.v</i> Non-conservative ergies. The mass of A is fo	d) $v = r\omega$ d) $1/2 (Iv^2)$					
a) $v = d\theta$ 36. The equation of ro a) $1/2 (m\omega^2)$ 37. The spring force is a) Conservative 38. Two bodies, A and momentum of A to that a) 1:9 39. Kinetic energy is r a) Velocity of the obj c) Acceleration of the	b) $v = ra$ tational kinetic energy is b) $1/2 (Ia^2)$ b) d B, have equal kinetic energy at of B is: b) 1:3 c) related to the: ect b) e object d)	c) $a = r\alpha$ given by: c) <i>m.v</i> Non-conservative ergies. The mass of A is for 1:2 d) 2:1 Height of the object Velocity square of the object	d) $v = r\omega$ d) $1/2 (Iv^2)$ but times that of B. The ratio of the					
a) $v = d\theta$ 36. The equation of ro a) $1/2 (m\omega^2)$ 37. The spring force is a) Conservative 38. Two bodies, A and momentum of A to that a) 1:9 39. Kinetic energy is r a) Velocity of the obj c) Acceleration of the 40. Object 1 and Objec	b) $v = ra$ tational kinetic energy is b) $1/2 (Ia^2)$ b) d B, have equal kinetic energy at of B is: b) 1:3 c) related to the: ect b) e object d) ect 2 are in a completely in	c) $a = r\alpha$ given by: c) <i>m.v</i> Non-conservative ergies. The mass of A is for 1:2 d) 2:1 Height of the object Velocity square of the object nelastic collision. What is	d) $v = r\omega$ d) $1/2 (Iv^2)$ but times that of B. The ratio of the					
a) $v = d\theta$ 36. The equation of ro a) $1/2 (m\omega^2)$ 37. The spring force is a) Conservative 38. Two bodies, A and momentum of A to that a) 1:9 39. Kinetic energy is r a) Velocity of the obj c) Acceleration of the 40. Object 1 and Objec	b) $v = ra$ tational kinetic energy is b) $1/2 (Ia^2)$ b) d B, have equal kinetic energy at of B is: b) 1:3 c) related to the: ect b) e object d)	c) $a = r\alpha$ given by: c) <i>m.v</i> Non-conservative ergies. The mass of A is for 1:2 d) 2:1 Height of the object Velocity square of the object relastic collision. What is 13 kg.m/s.	d) $v = r\omega$ d) $1/2 (Iv^2)$ but times that of B. The ratio of the					